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Abstract—Neural networks are susceptible to data inference attacks, including the membership inference attack, the adversarial model
inversion attack and the attribute inference attack. In this paper, we propose a method, namely PURIFIER, to defend against membership
inference attacks. The PURIFIER works by transforming the confidence scores predicted by the target classifier and generating purified
confidence scores, which are indistinguishable in individual shape, statistical distribution and prediction label between members and
non-members of dataset. We set up experiments on a large number of widely adopted datasets and models. The results show that
PURIFIER helps defend membership inference attacks with high effectiveness and efficiency, outperforming previous defense methods,
and also incurs negligible utility loss. Besides, our further experiments show that PURIFIER is also effective in defending adversarial model
inversion attacks and attribute inference attacks.
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1 INTRODUCTION

MACHINE learning as service has been widely adopted
in various fields, ranging from face recognition to in-

telligent medicine. While providing convenience for people’s
life, machine learning that takes use of private information
also brings potential danger of data leakage.

Usually, users have access to APIs given by the service
providers, which return a confidence score vector or a label
from the output of machine learning model. However, many
studies indicate that the predicted information can also be
used by adversaries for data inference attack, which aims at
inferring secret information about data involved in the work-
flow of the target model[1], [2], [3]. Data inference attacks
could be largely divided into three categories: membership
inference attacks [1], [4], [5], [6], [7], [8], [9], [10], [11], attribute
inference attacks [12] and adversarial model inversion attacks [13].
In this paper, we take the membership inference attack as a
starting example to study the mitigation of data inference
attacks.

In the membership inference attack, the adversary is
asked to determine whether a given data sample is in the
target model’s training data. Many studies acknowledge
that the confidence scores tell more prediction information
beyond the label and thus they should be provided in the
prediction results. Therefore, a number of approaches have
been proposed to defend the membership inference attack
while preserving the confidence scores [1], [4], [5], [14], [15],
[16]. On the other hand, some studies believe that removing
the confidence information in the prediction result is a way
of defending the membership inference attacks. However,
these defenses are broken by label-only attacks [6], [17], [8],
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whereby only the predicted label is exploited to infer the
membership.

It has been widely recognized that one of the major
reasons why membership inference attack works is that the
prediction results are distinguishable between members and
non-members. For example, when a model overfits on the
training dataset, it behaves more confidently when handling
inputs from members than non-members. Many studies
exploit the prediction differences between members and
non-members to perform membership inference attacks.

In general, the prediction differences can be manifested
in the following three aspects. (1) Individual shape. The
confidence scores of members and non-members differ in
their individual shapes. This is because the target model
often assigns a higher probability to the predicted result
when given a member than a non-member. This is exploited
by many attacks [4], [5] (2) Statistical distribution. Confidence
scores of members and non-members are also distinguishable
in their statistical distribution. Our experiments show that
confidence scores on the members are more clustered in the
encoded latent space, while those on non-members are more
scattered. BlindMI [9] exploits such statistical difference to
infer membership by comparing the distance variation of the
confidence scores of two generated datasets. (3) Prediction
label. Differences in confidence scores on members and
non-members can cause differences in prediction labels.
Member samples have a higher probability of being correctly
predicted than the non-member samples, which leads to
a difference in classification accuracy. Various label-only
attacks exploit such distinguishability to perform their
attacks [6], [7], [8].

In this paper, we propose a defense method, namely
PURIFIER, against membership inference attack. It takes the
confidence scores predicted by the target model as input,
and outputs transformed confidence scores, which behave
indistinguishably between members and non-members in



2

individual shape, statistical distribution, and prediction label. To
be more specific, (1) to purify individual shape, we propose
a novel training strategy to train a module named confidence
reformer. The confidence reformer is trained on confidence
scores predicted by the target model on non-members, which
enables the model to learn the individual shape of confidence
scores on non-members. The confidence scores on members
become indistinguishable from those on non-members after
being transformed by the confidence reformer. (2) To purify
statistical distribution, we introduce Conditional Variational
Auto-Encoder (CVAE) in the confidence reformer, with the
purpose of adding Gaussian noises to confidence scores. The
Gaussian noises scatter the originally statistically-clustered
confidence scores, thus blurring the distinction between
members and non-members in statistical distribution. (3)
To purify prediction label, we propose a mechanism named
label swapper. To defend label-only attacks which takes use
of classification accuracy gap between members and non-
members, label swapper modifies the prediction labels on
members to the class of the second largest confidence at a
specially designed rate. To further improve the robustness
of PURIFIER, we design the label swapper to tolerate small
perpetuations added by the attacker to members to sniff their
membership privacy.

Experiments show that PURIFIER has a good performance
in defending membership inference attacks. It turns out that
PURIFIER is also effective in defending the attribute inference
attack and the adversarial model inversion attack. We have
performed extensive experiments on 7 widely used datasets,
including CIFAR10, CIFAR100, Facescrub530, UTKFace, Pur-
chase100, Texas and Location. For instance, when defending
membership inference attacks, the accuracy of NSH attack
[4] on CIFAR100 decreases from 76.98% to 50.91%, and the
accuracy of Mlleak attack [5] on CIFAR100 decrease from
73.78% to 50.19%. On average, when applying PURIFIER,
the inference accuracy of NSH attack on CIFAR100 is 2.23%
to 9.28% lower than other defense methods. It is worth
mentioning that although applying SELENA [18] usually
has a similar inference accuracy as applying PURIFIER, the
training time of PURIFIER is only 0.423 times of the target
model, much lower than that of SELENA (22.42 times). When
defending attribute inference attack, the accuracy to predict
race on UTKFace decreases from 31.06% to 21.07% (almost
random guessing). When defending model inference attack,
the inversion loss on FaceScrub530 is raised 4+ times from
0.0114 to 0.0454 after applying PURIFIER. We believe that
the purification process contributes to the removal of the
redundant information (hidden in the confidence scores) that
is useful to recover the input sample, and preserves only the
essential semantic information for the prediction task. As a
result, the adversary can obtain no more useful information
than the prediction itself from the purified prediction results.

Contributions. In summary, we make the following
contributions in this paper.

1) To the best of our knowledge, we are the first to
study membership inference attack from the three
aspects: individual shape, statistical contribution and
prediction label.

2) We design PURIFIER to defend data inference at-
tack, consisting of label swapper and confidence

reformer. By transforming confidence scores, PURI-
FIER achieves indistinguishability between members
and non-members in the above three aspects.

3) On the basis of our extensive experiments, PURIFIER
outperforms other defense methods in both effective-
ness and efficiency when defending data inference
attacks.

2 INFERENCE ATTACKS ON MACHINE LEARNING

It has been shown that machine learning are vulnerable to
various inference attacks [19], [1], [6], [13], which enables
adversaries to get useful information about the target model
from only the prediction APIs. Depending on the inference
goals, these inference attacks generally fall into two classes,
i.e., model inference and data inference. Specifically, model
inference aims at obtaining the information about the target
model itself such as its parameters and architecture [20], [21],
[22], [23]. Data inference, on the contrary, focuses on extract-
ing information about the data on which the target model
operates [24], [2], [19], [1], [25], [26], [13], [6]. In this paper,
we concentrate on three of the most important and exemplary
data inference attacks, notably membership inference attack,
attribute inference attack and model inversion attack. In this
section, we first introduce these three data inference attacks
and then introduce existing defenses. Finally, we analyze the
limitations of existing defense mechanisms.

2.1 Data Inference Attacks
Membership inference, attribute inference and model inver-
sion attacks are three types of data inference attacks that
threaten the security and privacy of machine learning. They
differ in their inference goals.
Membership Inference Attack. In the membership inference
attack, the attacker is asked to determine whether a given
data record is part of the training data of the target model.

Confidence-based Attack [1]. Shokri et al. introduces mem-
bership inference against black-box models, where the
attacker has access only to the prediction scores of the
target model. To infer the membership, the attacker trains
a binary classifier (also referred to as attack model) which
takes as input the confidence scores of the target model on
a given data sample and predicts the data sample to be a
member or non-member of the training dataset of the target
model. Prior to training the attack model, the attacker trains
a set of shadow models on an auxiliary dataset drawn from
the same data distribution as the target model’s training
data to replicate the target model. The attack model is then
trained on the confidence scores predicted by the shadow
models instead of the target model on the members and
non-members of the shadow models’ training data.

NSH Attack [4]. This is a confidence & label-based mem-
bership inference attack proposed by Nasr, Shokri and
Houmansadr. The attacker is assumed to have knowledge of
the membership labels, and thus can directly query the target
classifier to get the confidence score vectors of members and
non-members without training the shadow model.

Mlleaks Attack [5]. In this attack, the attacker knows the
ground truth of auxiliary dataset but does not know their
membership labels. Therefore, a shadow model is required
to replicate the target model.
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Adaptive Attack [5]. This is a sort of membership inference
attack conducted on the pruned model with defense when
the attacker knows the defense.

BlindMI Attack [9]. This is a membership inference attack
which probes the target model and extracts membership
semantics via differential comparison. The high-level idea
is that BlindMI first generates a dataset with non-members
via transforming existing samples into new samples, and
then differentially moves samples from a target dataset to
the generated, non-member set in an iterative manner. If
the differential move of a sample increases the set distance,
BlindMI considers the sample as non-member or vice versa.

Label-only Attack [7], [17]. Label-only attack is a black-box
membership inference attack conducted based on only the
output label of the target model. In the Gap Attack [17],
the attacker is assumed to have the ground truth of the
data sample and predicts that it is a member if and only
if the target classifier gives the correct label on the sample.
In the Transfer attack [7], auxiliary dataset is re-labeled by
querying the target model, thus the adversary can train a
shadow model to lauch a score-based membership inference
attack locally. In the Boundary attack [7], auxiliary dataset
is not available. The adversary utilize adversarial example
techniques to perturb the input to mislead the target model
and consider the samples with perturbations larger than a
threshold as member samples.

MIA from First Principles [10]. Nicholas Carlini et al. argue
that membership inference attacks are currently evaluated
using average-case "accuracy" metrics that fail to characterize
whether the attack can confidently identify any members
of the training set. They argue that attacks should instead
be evaluated by computing their true-positive rate at low
(e.g., <0.1%) false-positive rates, and find that most prior
attacks perform poorly when evaluated in this way. They
perform MIA by training N shadow models on random
samples from auxiliary dataset, so that half of models are
trained on the target sample, and half are not (they call
these respectively IN and OUT models). The membership
is predicted by comparing confidence scores on the target
sample of target model with those of IN and OUT models.

Enhanced MIA [11]. Jiayuan Ye et al. present a comprehen-
sive hypothesis testing framework that supports not only
formally expressing the prior work in a consistent way, but
also designing new membership inference attacks that use
reference models to achieve a significantly higher power
(true positive rate) for any (false positive rate) error. They
propose 4 attacks in their work, called S, P, R and D, each
with diffrent setting on the boundary between members and
non-members.
Attribute Inference Attack. Attribute inference aims to
infer sensitive attributes [19], [27], [26], [28] or statistical
information [24] about the training data. For example, the
race attribute of the samples can be inferred with an API to
the gender classifier on UTKFace dataset [12]. The adversary
has an auxiliary dataset and queries the target model to get
the confidence scores. Then the adversary train a classifier
on the confidence scores, using the race attribute as label.
Thus the race of a sample can be predicted with the output
of gender classifier.
Model Inversion Attack. Model inversion aims to recon-
struct the input data from its confidence scores predicted by

the target model. Fredrikson et al. [2] proposed a method
to infer a representative sample of a training class against
a white-box target model. It casts the inversion task as an
optimization problem in the input domain to find the best
representative for a given class. Yang et al. [13] proposed a
model inversion attack in the black-box setting. Specifically,
they train a separate inversion model on an auxiliary dataset
which acts as the inverse of the target model. The inversion
model takes the confidence scores of the target model as
input and tries to reconstruct the original input data.

2.2 Defenses against Data Inference Attacks

Previous defense mechanisms against data inference attacks
are mostly limited to mitigating membership inference
attacks. Unfortunately, little has been studied about the
approach of simultaneously defending attribute inference
attacks and model inversion attacks on classification models.
Therefore, we introduce existing defenses against member-
ship inference attacks as typical examples in the literature
defending data inference attacks.

Min-Max Game [4]. Nasr et al. propose to add an adver-
sarial regularizer to the loss function of the target model
such that it is trained to minimize the prediction loss and
also to maximize membership privacy. The training process
is formulated as a min-max optimization problem.

MemGaurd [15]. Jia et al. study to transform the confi-
dence score vector into an adversarial example to evade the
membership classification of the attack model. Specifically,
the defender adds carefully-crafted noise to the confidence
score vector predicted by the target model so as to turn it
into an adversarial example. To this end, the defender first
trains its own “attack model” which works similarly as the
attacker’s attack model, and thus it can craft the adversarial
example against its attack model in a white-box manner.

Model Stacking [5]. Model stacking is essentially an en-
semble approach which combines multiple simple classifiers
as a complicated one to make the final prediction. It is often
used as a way of reducing overfitting, and can be leveraged
to mitigate membership inference attacks.

MMD defense [29]. Li et al. propose a defense method that
aims to close the gap by intentionally reduces the training
accuracy. The training process attempts to match the training
and validation accuracies, by means of a new set regularizer
using the Maximum Mean Discrepancy between the softmax
output empirical distributions of the training and validation
sets.

SELENA [18]. Xinyu Tang et al. propose a new frame-
work to train privacy-preserving models that induce similar
behavior on member and non-member inputs to mitigate
membership inference attacks, SELENA, which has two
major components. The first component is an ensemble
architecture for training called Split-AI. This architecture
splits the training data into random subsets and trains a
model on each subset of the data. An adaptive inference
strategy is used at test time. The ensemble architecture
aggregates the outputs of only those models that do not
contain the input sample in their training data. The second
component, Self-Distillation, (self-)distills the training dataset
through the Split-AI ensemble, without using any external
public datasets.



4

Relax Loss [30]. Existing works evidence a strong con-
nection between the distinguishability of the training and
testing loss distributions and the model’s vulnerability to
MIAs. Motivated by existing results, Dingfan Chen et al.
propose a training framework based on a relaxed loss with
a more achievable learning target, which leads to narrowed
generalization gap and thus reduces privacy leakage.

One-Hot Encoding. It encodes a confidence vector into a
one-hot vector (i.e., the entry with the largest confidence is
set to 1 and the other entries are all 0).

2.3 Limitations of Existing Defenses
Previous studies of defense mechanisms against the mem-
bership inference attack did not discuss their impact on the
attribute inference attack and model inversion attack which
is one of the important data inference attacks that threaten
the security and privacy of machine learning data. To the best
of our knowledge, no known defense method of membership
inference, attribute inference and model inversion attacks is
available.

It is shown that overfitting is not the only reason that
causes membership inference attack [1]. Even if different
machine learning models are overfitted to the same degree,
they could leak different amounts of membership informa-
tion. Specifically, due to their different structures, they might
"remember" different amounts of information about their
training data. Actually, the attacker exploits the information
about how the target model’s confidence scores distinguish
members from non-members to launch membership infer-
ence attack [1]. As what existing defense mechanisms already
do, reducing overfitting contributes to the decrease of such
distinguishability. However, such defense methods could
be more effective if the distinguishability can be directly
reduced.

Meanwhile, the efficiency of some existing defense meth-
ods is not high enough. For example, when performing
MemGaurd [15], the defender adds carefully-crafted noise to
the confidence scores so as to turn it into an adversarial
example. It takes much time to find the suitable noise,
causing that MemGaurd is not efficient enough.

3 PROBLEM STATEMENT

We focus on classification models of neural networks, i.e., a
machine learning classifier F is trained on its training dataset
Dtrain to map a given sample x to a specific class based on
the confidence vectors F (x⃗) which is the classifier output.
There are three parties in our problem, namely model owner,
attacker and defender.

3.1 Model Owner
The model owner trains a machine learning classifier F
on its training dataset Dtrain which is drawn from some
underlying data distribution px(x⃗). The classifier F is trained
with the goal of making predictions on unseen data which
we refer to as test dataset Dtest. Let x⃗ represent the data
drawn from px, and y⃗ be the vectorized class of x⃗. The
training objective is to find a function F to well approximate
the relation between each data point (x⃗, y⃗). Formally, we
have F : x⃗ 7→ y⃗. The training process is to optimize an

objective function L(F ). The model owner releases the
trained classifier F as a black box, for example, as a cloud
service, and provides prediction APIs to users. The users
can query F with their own data sample x⃗ ∈ Dtest through
the prediction APIs. The classifier F returns a confidence
score vector F (x⃗) to the users. The confidence score vector
is a probability distribution of the classifier’s confidence
over all the possible classes. For example, the i-th element
F (x⃗)i is the probability of the data x⃗ belonging to class i. We
usually take the class with the maximum probability to be
the predicted label of the data x⃗.

3.2 Attacker

The attacker aims at performing data inference attacks
against the target classifier F . We focus on membership
inference attack [1], attribute inference attack [12] and model
inversion attack [13], [2]. We assume that the attacker has a
black-box access to the classifier F , where the attacker can
only query F with its data sample x⃗ and obtain the prediction
scores F (x⃗). The attacker is also assumed to have an auxiliary
dataset Daux such as a set of data samples drawn from a
similar data distribution as the target classifier’s training
data distribution.

In the membership inference attack, the attacker is asked
to determine whether a given data record x⃗ is part of
the training data Dtrain according to F (x⃗). A common
approach is to leverage the auxiliary dataset Daux and train a
membership classifier which takes F (x⃗) as input and predicts
the membership.

Membership inference attacks can be largely divided into
three categories depending on the underlying distinguisha-
bility of confidence scores that they exploited: individual
shape, statistical distribution and prediction label. In this paper,
to fairly evaluate the defense performance of our approach,
we consider all the three categories of membership inference
attacks.
Individual shape. The distinguishability of individual shape
exposes because a member sample and a non-member
sample differ in the distribution of confidence scores they
get. For example, the classifier usually predicts the class of
member data with a high degree of confidence, which means
that the value of the maximal score in the vector would be
larger for member sample than non-member sample. This can
be shown by Figure 1 (a), where we calculate the frequency
of confidence on members and non-member in correct class
and prediction uncertainty. It can be clearly seen that there
are more non-members than members at low confidence, and
more members than non-members at high confidence.
Statistical distribution. The distinguishability of statisti-
cal distribution means that confidence scores on member
samples of the same class are more similar than those on
non-member samples. In an intuitive way, we reduce the
dimension of the latent vectors of the confidence scores, and
plot them in a coordinate graph, as shown in Figure 1 (b). We
can see that members data of the same class are more closely
clustered than non-members.
Prediction label. The prediction label for a sample is the
class corresponding with the maximal score in confidence
vector. The distinguishability of prediction labels directly
leads to the difference between training accuracy and testing
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Fig. 1: Individual and statistical distinguishability between
members and non-members in CIFAR10.

accuracy, where the former is higher in general. For example,
the training accuracy of the classifier on CIFAR10 is 99.99%,
while the testing accuracy is 95.92% in our experiment.

In the attribute inference attack, the attacker aims at
inferring the additional sensitive attribute about the given
data record x⃗ according to the F (x⃗). A classifier is trained
on F (x⃗) and it takes F (x⃗) as input and is able to infer other
attributes of x⃗ [12].

In the model inversion attack, the attacker aims at
inferring a reconstruction of x⃗ from F (x⃗). In the black-box
setting, the attacker trains a separate inversion model on
Daux which acts as the inverse of the target F . The inversion
model takes F (x⃗) as input and is able to reconstruct x⃗ [13].

3.3 Defender

The defender could be the model owner or a third party
who has access to the target classifier’s prediction results.
The defender has the train dataset Dtrain and a reference
dataset Dref which is composed of non-member data to
implement the defense. This strategy ensures that the defense
is compatible with existing models without retraining the
target classifier. For any query to the target classifier from
users, the defender modifies the prediction results of the
target classifier before returning it to users. The attacker
has access only to the modified prediction results from the
defender. In particular, the defender wants to achieve the
following three goals.

Defense. The defender aims at defending the member-
ship inference attack, attribute inference attack and the
model inversion attack. Specifically, the defender wants to
reduce the membership and attribute classification accuracy
and increase the reconstruction error of the input sample
performed by the attacker.

Utility. The classification accuracy on the test dataset
Dtest is one of the metrics to evaluate the utility of the model.
The defender aims at defending the target model with least

loss of utility (i.e., least reduction of classification accuracy
on Dtest).

Efficiency. The defense mechanism should incur accept-
able overhead in the total training time and the test time of
predicting a data sample.

4 APPROACH: PURIFIER

We propose PURIFIER as a defense against data inference
attacks. The main idea is to transform the confidence vector
F (x) so that it appears indistinguishable on members and
non-members. PURIFIER consists of a label swapper H and
a confidence reformer G, as shown in Figure 2. The label
swapper H takes the original confidence score vectors, and
modifies the predicted labels of members to reduce the gap of
classification accuracy between members and non-members,
achieving indistinguishability of prediction label. The con-
fidence reformer G takes as input the swapped confidence
score vectors from H and reforms them as if they were
predicted on non-members, achieving indistinguishability of
individual shape and statistical distribution.

In the rest of this section, we expand on how the three
distinguishabilities lead to the privacy leak of membership
and how PURIFIER is designed to make the confidence score
on members and non-members indistinguishable from the
aforementioned three aspects.

4.1 Design of Confidence Reformer

In order to achieve individual and statistical indistinguisha-
bility between members and non-members, PURIFIER reforms
the confidence scores with the confidence reformer G, which
is a CVAE. G takes the confidence vector H(F (x⃗)) (the
confidence vector modified by label swapper) as input, with
the corresponding label l being the condition. H(F (x⃗)) first
goes through the encoder, where it is mapped to the encoded
latent space r⃗. The decoder then maps the confidence vector
back from the latent space r⃗, and the reformed confidence
vector G(H(F (x⃗))|l) is obtained. G is trained on the con-
fidence scores predicted by F and modified by H on the
defender’s reference dataset Dref , which consists of non-
member samples. Moreover, to preserve the classification
accuracy, we also take the label loss into consideration when
training G. Formally, G is trained to minimize the following
objective function.
L(G) = E

x⃗∼pr(x⃗)
[R((G(H(F (x⃗))|l), F (x⃗)) + λL((G(H(F (x⃗))|l), l)]

(1)

where pr(x⃗) represents the conditional probability of x⃗ for
samples in Dref , l represents the label of H(F (x⃗)) (i.e., l =
argmax(H(F (x⃗)))). R is a reconstruction loss function (L2

norm) and L is the cross entropy loss function. The parameter
λ is to adjust the ratio of two loss functions during training.

The training process of confidence reformer goes as Algo-
rithm 1. For each epoch, we first draw a mini-batch of data
points {(x⃗ref , yref )}qj=1 from the reference set Dref . Then
we query the target classifier F to obtain the confidence
scores c⃗rj , and the label lrj . After that, the loss is calculated
on the objective function 1 and gradient descent is used
to update the parameters θ of confidence reformer G. With
this training process, while preserving the classification
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Fig. 2: Architecture of PURIFIER. PURIFIER consists of a label swapper H and a confidence reformer G. H can reduce the gap of
classification accuracy between members and non-members by modifying the predicted labels of specific training data. G is
a Conditional Variational Auto-encoder(CVAE), with the predicted label l as the condition. G can reform the confidence
scores by mapping H(F (x⃗)) to the latent space r⃗ with the encoder and mapping it back with the decoder.

Algorithm 1: Training process of confidence reformer.
Input: The reference dataset Dref , the target classifier with

label swapper H · F , size of mini-batch q, number of
epochs P , learning rate η, label loss coefficient λ

Output: confidence reformer Gθ

1 θ ← initialize(Gθ) ;
2 for p = 1 to P do
3 for each mini-batch {(x⃗refj

, yrefj
)}q

j=1
⊂ Dref do

4 c⃗rj ← H(F (x⃗refj ));
5 lrj ← onehot(argmax(c⃗rj )) ;
6 g ← ∇θ

1
q

∑q
j=1R(Gθ(c⃗rj |lrj ), c⃗rj ) +

λL(Gθ(c⃗rj |lrj ), lrj );
7 θ ← updateParameters(η, θ, g);
8 end
9 end

10 return Gθ

accuracy, G also learns the pattern of individual shape on non-
member samples, through which G could remove difference
in the individual shape of input confidence vector, achieving
individual indistinguishability.

To mitigate the difference in statistical distribution be-
tween members and non-members, confidence reformer G
introduces Gaussian noises in the latent space r, where the
label l is used as the condition. During the training process,
the reconstruction loss R encourages the decoder of G to
generate confidence scores that have a similar pattern as the
non-member ones on Dref (non-members) with the same
label l. Although noises introduced in the latent space r⃗ will
increase the reconstruction error, as a result, G adaptively
learns a robust latent representation that could preserve the
statistical distribution of the non-members of label l even if
noises are added. During the inference process, the added
noises break down the clustering of confidence scores on
members, while the decoder generates the reformed versions
that are similar to the ones on Dref , mitigating the difference
in statistical distribution.

4.2 Design of Label Swapper

With confidence reformer G, we can achieve indistinguisha-
bility of individual shape and statistical distribution. How-
ever, to keep the accuracy of classifier, G hardly changes
the confidence class when transforming confidence vector,
which means that the confidence reformer can’t cope with the
distinguishability of prediction label well.

To handle this problem, we design a mechanism named
label swapper. The label swapper H modifies the prediction
labels of members to reduce the gap of classification accuracy
between members and non-members. In detail, H randomly
selects training samples to replace their predicted labels with
the ones with the second largest predicted scores at a certain
swap rate pswap.

pswap = (acctrain − acctest)/acctrain (2)

where acctrain and acctest are the training accuracy and the
test accuracy of the target classifier respectively. Note that
H only swaps member data. At this swap rate pswap, the
training accuracy can decrease to testing accuracy, achieving
indistinguishability of the prediction label.

A naive implementation is as follows. When the input
confidence vector belongs to member, H swap its label with
probability pswap. It leads to the problem that whether to
swap the prediction label of a member sample is uncertain
each time. Thus the attacker can get different prediction
results with replay attacks, which exposes a more severe
distinguishability between members and non-members.

To mitigate the replay attacks and further improve the
efficiency of label swapper, we design a prediction indexing
set Pindex instead of the whole Dtrain for the label swapper
to swap labels. Specifically, as Algorithm 2 presents, we first
select the data from Dtrain at rate pswap randomly to form
Dswap. After that, we query the target classifier F to get the
confidence scores c⃗j of the sample (x⃗trainj , ytrainj ) ∈ Dswap.
After mapping the original confidence vector c⃗j to its hash
value hj , hj is added to the prediction indexing set Pindex.
The setting of Pindex also helps to improve efficiency. It is
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Algorithm 2: Pre-process of label swapper.
Input: The training dataset Dtrain, the target classifier F , size

of the data need to be modify the labels t
Output: The prediction indexing set Pindex

1 Pindex ← ∅;
2 Dtrain ← shuffle(Dtrain);
3 Dswap ← {(x⃗trainj , ytrainj )}

t
j=1
⊂ Dtrain;

4 for each (x⃗trainj , ytrainj ) ∈ Dswap do
5 cj ← F (x⃗trainj );
6 rj ← getLatent(cj);
7 hj ← Hash(cj , rj);
8 Pindex ← Pindex ∪ {hj};
9 end

10 return Pindex

Algorithm 3: Inference process of PURIFIER.
Input: The input sample x⃗, the target classifier F , the trained

confidence reformer Gθ , the prediction indexing set Pindex,
a helper function Swap that take a vector as input and
swap the largest element with the second largest element,
the number of neighbors of kNN k, the distance
precision of kNN d

Output: The purified confidence score cpurified
1 c← F (x⃗);
2 r ← getLatent(c);
3 h← Hash(c, r);
4 if kNN(h, Pindex, k, d) then
5 c← Swap(c);
6 end
7 l← onehot(argmax(c));
8 cpurified = Gθ(c|l);
9 return cpurified

challenging for the label swapper to efficiently store and
index the member information in Dtrain, while Pindex has a
much smaller dimension and size than Dtrain.

We should note that small perturbations may be added
to the input data by attackers to indirectly infer membership
of a target member sample x ∈ Dswap. More specifically,
after adding small perturbation to a member, the sample
isn’t in Pindex, so its label won’t be swapped, which causes
the member to be less robust to noise. Thus we can’t just
simply match whether an input confidence vector is in Pindex.
Instead, H uses k nearest neighbor (kNN) to identify these
suspicious noisy members. If the distances between the
confidence vector on a sample and those on the k-nearest
members are all less than a certain parameter d, then the
sample is considered as a member and should have its label
swapped.

4.3 Defense Process of PURIFIER

After the training process of confidence reformer and pre-
process of label swapper, we can perform defense with the
trained confidence reformer Gθ and prediction indexing set
Pindex. Gθ is used to transform the confidence scores, and
Pindex is used to determine whehter to confidence scores
need to swap.

As algorithm 3 shows, in the inference stage, given an
input sample x⃗, we first query the target classifier F to
get the confidence scores c. Then, we input c into the label
swapper H . H checks if c has a match in Pindex using kNN
and swaps the largest score with the second largest score if c
is matched. At this stage, c is indistinguishable in prediction
label. Then, we input c into the confidence reformer G, with
the prediction label l being the condition, to get the purified

confidence vector cpurified. This ensures indistinguishability
in terms of individual shape and statistical distribution.
Finally, PURIFIER returns the purified confidence scores
cpurified.

5 EXPERIMENTS

In this section, we perform experiments on various widely
adopted datasets and models to test the performance of
PURIFIER. We first introduce the dataset and model settings
in detail. Then we conduct various experiments with the
purpose of showing that: (1) PURIFIER is effective in defend-
ing membership inference attack, attribute inference attack
and model inversion attack. (2) PURIFIER outperforms other
defense methods in effectiveness. (3) with the defense of
PURIFIER, individual, statistical and label indistinguishability
are achieved. (4) PURIFIER is efficient. Also, we furthur
discuss what if swapping confidence reformer and label
swapper, and proving that PURIFIER has a better perfor-
mance with label swapper before confidence reformer. In
the end, we conduct three additional experiments to more
comprehensively show the performance of PURIFIER.

5.1 Dataset and Model Settings
5.1.1 Dataset Settings
We use CIFAR10, Purchase100, FaceScrub530, UTKFace,
CIFAR100, Texas and Location datasets which are widely
adopted in previous studies on membership inference attacks,
attribute inference attacks and model inversion attacks.
CIFAR10 [1], [5], [7], [10]. It is a machine learning benchmark
dataset for evaluating image recognition algorithms. It
consists of 60,000 color images, each of size 32 x 32. The
dataset has 10 classes, where each class represents an object
(e.g., airplane, car, etc.)
Purchase100 [1], [4], [5], [7]. This dataset is based on
Kaggle’s ”acquired valued shopper” challenge. 1 We used
the preprocessed and simplified version of this dataset [1]. It
is composed of 197,324 data records and each data record has
600 binary features. The dataset is clustered into 100 classes.
FaceScrub530 [13]. This dataset consists of URLs for 100,000
images of 530 individuals. We obtained the preprocessed and
simplified version of this dataset from [13] which has 48,579
facial images and each image is resized to 64 × 64.
UTKFace[31], [12]. This dataset consists of URLs for 22000
images of individuals. We train the classifier to classify the
gender attribute and use the race attribute as the sensitive
attribute in our experiments.
CIFAR100[1], [10]. It is a machine learning benchmark
dataset for evaluating image recognition algorithms with
10 classes. It consists of 60,000 color images, each of size 32 x
32. The dataset has 100 classes and each class has 600 images.
Texas[1], [17]. We use the same data as previous studies,
which cluster the data with 6169 attributes to 100 classes.
Location[1], [17]. This dataset is based on the publicly
available set of mobile users’ location "check-ins" in the
Foursquare social network, restricted to the Bangkok area
and collected from April 2012 to September 2013. The record
of Location has 446 attributes and has clustered into 30
classes.

1https://www.kaggle.com/c/acquire-valued-shoppers-
challenge/data
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TABLE 1: Data allocation. A dataset is divided into training
set D1 of the target classifier, reference set D2 and test set D3.
In membership inference attack, we assume that the attacker
has access to a subset DA of D1 and a subset D

′A of D3.

Dataset D1 D2 D3 DA D
′A

CIFAR10 50,000 5,000 5,000 25,000 2,500
Purchase100 20,000 20,000 20,000 10,000 10,000
FaceScrub530 30,000 10,000 8,000 15,000 4,000

UTKFace 12,000 5,000 5,000 6,000 2,500
CIFAR100 50,000 5,000 5,000 25,000 2,500

Texas 10,000 10,000 10,000 5,000 5,000
Location 1,600 1,600 1,600 800 800

Table 1 presents the data allocation in our experiments.
We divide each dataset into the target classifier’s training set
D1, the validation set D2 and the test set D3. They have no
overlap with each other. In membership inference attack and
attribute inference attack, we assume that the attacker has
access to a subset DA of D1 and a subset D′A of D3 to form
its auxiliary dataset Daux. We use the remaining data in D1

and D3 to test the membership inference accuracy. We use
D2 as the reference dataset for defenses that require such a
dataset, e.g., MemGaurd [15], Min-Max [4] and our approach.
In the model inversion attack, for the FaceScrub530 classifier,
the attacker uses a CelebA [32] dataset to train the inversion
model, following the same setting in [13]. For other classifiers,
the attacker samples 80% from D1, D2 and D3 respectively
to train the inversion model, and uses the remaining 20%
data to test the inversion error.

5.1.2 Target Classifier Setting

We use the same model architectures as in previous work [4],
[13], [7] to train the target classifiers. That is,
For CIFAR10 and CIFAR100 datasets, we use DenseNet121
[33]. We train our classifier with stochastic gradient descent
(SGD) optimizer for 350 epochs with a learning rate of 0.1
from epoch 0 to 150, 0.01 from 150 to 250, and 0.001 from 250
to 350. The classifier is regularized with L2 regularization
(weight decay parameter 5e-4).
For Purchase100 dataset, we use the same model and training
strategy as in previous work [4] to train the target classifier.
It is a 4-layer fully connected neural network.
For FaceScrub530 dataset, we use the same conventional
neural network and the same training strategy as in previous
work [13] to train the target classifier.
For UTKFace dataset, we use the same neural network and
the same training strategy as used in FaceScrub530 dataset,
except that the output layer dimension is changed to 2.
For Texas dataset, we use a 4-layer fully connected neural
network with the Tanh as the activation function.
For Location dataset, we use a 3-layer fully connected neural
network with the Tanh as the activation function.

5.1.3 PURIFIER Setting

We use CVAE to implement the confidence reformer G. It has
the layer size of [20, 32, 64, 128, 2, 128, 64, 32, 20] for CIFAR10,
[200, 128, 256, 512, 20, 512, 256, 128, 100] for Purchase100,
Texas and location, [1060, 512, 1024, 2048, 100, 2048, 1024, 512,
1060] for FaceScrub530 and CIFAR100. We use ReLU and
batch normalization in hidden layers. We train PURIFIER on

Purchase100 dataset for 150 epochs, CIFAR10, Texas and Lo-
cation datasets for 100 epochs, FaceScrub530 and CIFAR100
datasets for 300 epochs. We use Adam optimizer with the
learning rate 0.01 for CIFAR10, 0.0001 for Purchase100, Texas
and Location, and 0.0005 for Facescrub530 and CIFAR100.

5.1.4 Attack Setting
In our experiments, we implement the following data
inference attacks.
NSH attack [4]. The attacker take use of both the membership
labels and ground truth of Daux, and no shadow is trained.
The membership classifier makes use of both the confidence
scores and the ground truth of a data sample to predict its
membership.
Mlleaks attack[5]. We use half of Daux to train the shadow
model which has the same architecture as the target classifier
and use the whole Daux to train the membership classifier
with their labeled membership information in terms of the
shadow model. The membership classifier is a multi-layer
perceptron with a 128-unit hidden layer and a sigmoid output
layer. All weights were initialized with normal distribution
with a mean of 0 and standard deviation of 0.01, and all
biases are initialized to 0. We use the Adam optimizer with a
learning rate of 0.001. The number of training epochs is set
to 50 for each dataset.
Adaptive attack[5]. This is an adaptive version of the Mlleaks
attack, where the attacker is assumed to know all the details
of the defender’s PURIFIER and its training data D2. Hence,
the attacker trains the same PURIFIER and appends it to the
shadow model. The membership classifier is then trained on
the purified confidence score vectors.
BlindMI attack [9]. We consider BlindMI-DIFF-w/, where
the attacker is assumed to know the soft label and the
ground truth of the target dataset. We use sobel to generate
non-member samples. The size of the non-member dataset
|Snonmem| is 20.
Label-only attack [6], [7]. In the Transfer attack, auxiliary
dataset Daux is re-labeled by querying the target model. The
shadow models that we adopt share the same architecture
with the target model. Three different thresholds are chosen
in previous work, and we consider the one that gives the
best result on Daux. In the Boundary attack, we adopt
HopSkipJump noise, with a total evaluation of 15000 per
sample, which ensures the attack performance is stable.
Similarly, we report the results on the L2 norm. Due to
high query-complexity, the results are reported on a subset
that consists of 1000 samples.
MIA from first principles [10]. This paper provides two
algorithms: online and offline. To implement this attack, it is
necessary to first train shadow models. We train 16 shadow
models and adopt online algorithm in our experiments. In
the experimental results, we refer to it as FP attack for short.
Enhanced MIA [11]. This paper proposes 4 attack methods,
namely S, P, R and D. And training a number of shadow
models is also necessary in this attack. We adopt method D
and train 16 shadow models in our experiments.
Adversarial model inversion attack [13]. The attacker trains
an inversion model on Daux to perform the model inversion
attack.
Attribute inference attack [12]. The attacker trains a classifi-
cation on Daux to predict the additional sensitive attribute
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taking the confidence vectors as input. The classifier is a
multi-layer perceptron. All weights were initialized with
normal distribution with a mean of 0 and standard deviation
of 0.01, and all biases are initialized to 0. We use the Adam
optimizer with a learning rate of 0.00001. The number of
training epochs is set to 1500 for the UTKFace dataset.

5.1.5 Metric Setting
We use the following metrics to measure the defense perfor-
mance, inversion error and efficiency of a defense method.
Classification Accuracy. It is measured on the training set
and the test set of the target classifier. It reflects how good
the target classifier is on the classification task.
Inference Accuracy. This is the classification accuracy of the
attacker’s attack model in predicting the membership and
additional sensitive attribute of input samples.
Inversion Error. We measure the inversion error by com-
puting the mean squared error between the original input
sample and the reconstruction. For the FaceScrub530 classi-
fier, it is measured on D1 and D3. For other classifiers, it is
measured on the 20% of D1 and D3 respectively.
Efficiency. Following [13], we measure the efficiency of a
defense method by reporting its training time and testing
time relative to the original time required by the target
classifier.

5.2 Effectiveness of PURIFIER

5.2.1 Effectiveness against Membership Inference Attack
Table 2 presents the defense performance of PURIFIER against
different membership inference attacks. For each classifi-
cation task, PURIFIER decreases the attack accuracy and
preserves the classification accuracy. PURIFIER reduces the
accuracy of NSH attack significantly on different datasets. For
instance, it reduces the accuracy of NSH attack from 69.34%
to 51.56% in FaceScrub530 dataset. As for Mlleaks attack,
PURIFIER effectively reduces the attack accuracy to nearly
50%. Compared with the Mlleaks attack, the performance of
the adaptive attack does not show a large difference where
PURIFIER reduces the accuracy to nearly 50%. PURIFIER is
also effective against BlindMI attack. For example, PURIFIER
reduces the accuracy of BlindMI from 62.61% to 50.00% on
FaceScrub530 dataset.

To further study the effectiveness of PURIFIER against
stronger attackers, we evaluate the performance of PURIFIER
against NSH attack and Mlleaks attack which use the same
number of the data as the target model to train the shadow
model instead of half the number. As Table 3 shows, PURIFIER
is also effective to reduce the attack accuracy of the attackers
with more powerful shadow models. For instance, the attack
accuracy of the Mlleaks attack drops to 50.01% from 70.20%,
which means that PURIFIER is able to mitigate stronger
attacks which exploting more information (e.g., an attacker
has more data to train shadow models) than what we
assumed in the main paper.

5.2.2 Effectiveness against Adversarial Model Inversion
Attack
We further investigate the defense performance of PURIFIER
against adversarial model inversion attack. We train an
inversion attack model on top of each classifier with or

Test DataTrain Data

NO Defense 

(0.24)

SELENA 

(0.24)

MemGuard 

(0.17)

Min-Max 

(0.29)

Model-Stacking 

(0.17)

Purifier 

(0.14)

Fig. 3: Model inversion attack against the FaceScrub530
classifier defended by different approaches.

Train Data Test Data

No Defense
（0.0294）

MemGuard
（0.0425）

Min-Max
（0.0437）

Model-Stacking
（0.0425）

Purifier
（0.0443）

Ground Truth

Fig. 4: Model inversion attack against the MNIST classifier
defended by different approaches. Numbers on the left
indicate inversion errors

without defense both on the MNIST and the FaceScrub530
datasets. Although PURIFIER is designed to protect models
from membership inference attacks, it turns out that PURIFIER
is also effective in mitigating model inversion attack. Figure 3
shows the results of our experiment on adversarial model
inversion attack on FaceScrub530. We quantify the inversion
quality by reporting the average facial similarity scores
compared with the ground truth using the Microsoft Azure
Face Recognition service [34], which is shown on the left
side of Figure 3. The less the number is, the less similarity
the reconstructed samples share with the original samples.
With the defense of PURIFIER, the reconstructed samples have
smallest similarity scores with original samples, which means
PURIFIER outperforms other defense methods. Similarly,
Figure 4 shows the results against model inversion attack
on MNIST. We report the inversion error on the left side of
Figure 4 to quantify the inversion performance. As illustrated
in Figure 4, the attacker is able to reconstruct nearly identical
images when no defense is used. However, it is much more
difficult for the attacker to reconstruct the image from the
purifier-defended model. The reconstructed images lose a lot
of details compared with the original ones, only representing
a blurred image of their classes.
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TABLE 2: Defense performance of PURIFIER against various attacks. Results of Transfer attack and Boundary attack are
reported in AUC [7]. Note that N.A. means that the setting is not applicable.

Dataset Defense
Utility Membership Inference Attack Accuracy/AUC Inversion Error

Train acc. Test acc. NSH Mlleaks Adaptive BlindMI Label only attacks FP Enhanced L2 normGap Transfer Boundary

CIFAR10 None 99.99% 95.92% 56.03% 56.26% N.A. 54.76% 52.04% 0.5048 0.5214 57.96% 64.49% 1.4357
Purifier 95.93% 95.92% 50.91% 50.03% 50.00% 49.89% 50.01% 0.5010 0.4684 54.72% 50.12% 1.4939

Purchase100 None 100.00% 84.36% 70.36% 64.43% N.A. 69.82% 57.82% 0.5431 N.A. 77.57% 77.19% 0.1426
Purifier 84.47% 84.36% 50.00% 50.00% 50.25% 49.48% 50.06% 0.4961 N.A. 75.06% 50.16% 0.1520

FaceScrub530 None 100.00% 77.68% 69.34% 75.04% N.A. 62.61% 61.16% 0.5869 0.7739 87.09% 83.62% 0.0114
Purifier 77.51% 77.28% 50.08% 50.66% 50.12% 50.31% 50.12% 0.4990 0.5069 53.34% 50.84% 0.0454

CIFAR100 None 100.00% 69.98% 76.98% 73.78% N.A. 76.34% 76.86% 0.5980 0.6668 82.37% 82.54% 0.9073
Purifier 66.35% 66.34% 50.91% 50.19% 50.45% 49.87% 50.01% 0.4938 0.3742 77.32% 50.72% 0.9354

Texas None 79.17% 50.91% 66.37% 58.93% N.A. 53.88% 69.02% 0.5431 N.A. 72.28% 74.06% N.A.
Purifier 50.99% 47.88% 50.92% 46.38% 54.48% 52.35% 51.56% 0.4926 N.A. 53.34% 50.84% N.A.

Location None 100.00% 60.44% 82.37% 84.00% N.A. 76.13% 71.13% 0.5893 N.A. 92.22% 93.14% N.A.
Purifier 60.50% 59.44% 51.50% 50.06% 51.56% 50.06% 50.53% 0.4851 N.A. 87.73% 50.95% N.A.

TABLE 3: Results of PURIFIER against attackers with the more
powerful shadow models.

Dataset Defense NSH NSH Mlleaks Mlleaks
(strong) (weak) (strong) (weak)

CIFAR10 None 58.46% 56.03% 70.20% 56.26%
Purifer 51.08% 50.91% 50.57% 50.03%

Purchase100 None 88.27% 70.36% 68.50% 64.43%
Purifer 52.62% 50.00% 50.00% 50.00%

FaceScrub530 None 70.30% 69.34% 73.46% 75.04%
Purifer 50.46% 50.08% 49.96% 50.66%

CIFAR100 None 85.21% 76.98% 76.54% 73.78%
Purifer 51.37% 50.91% 50.45% 50.19%

Texas None 68.13% 66.37% 60.28% 58.93%
Purifer 60.53% 50.92% 54.75% 46.38%

Location None 82.81% 82.37% 86.56% 84.00%
Purifer 52.00% 51.50% 50.00% 50.06%

TABLE 4: Attribute inference attack against the UTKFace
classifier with and without PURIFIER.

Dataset Defense Utility Attack AccuracyTrain acc Test acc.

UTKFace None 99.92% 83.08% 31.06%
Purifier 83.87% 82.92% 21.07%

We report all the inversion error on CIFAR10, Pur-
chase100, FaceScrub530 and CIFAR100 in Table 2. As shown
in Table 2 and Figure 3, the inversion loss on the Face-
Scrub530 dataset is raised 4+ times (i.e. from 0.0114 to 0.0454)
after applying PURIFIER, indicating that the performance
reduction of the inversion attack is significant. Note that
the effect of defense against the adversarial model inversion
attacks on Purchase100 and CIFAR10 seems less significant
compared with FaceScrub530. This is because the inversion
attack does not perform well on these classifiers even without
any defense.

5.2.3 Effectiveness against Attribute Inference Attack
We deploy PURIFIER under the attribute inference attack and
find that PURIFIER is also effective in mitigating it. We train
an attribute inference classifier on UTKFace dataset to predict
the race of the given sample. Table 4 shows the results of our
experiment. The attribute inference accuracy on the UTKFace
dataset is reduced to 21.07% (almost random guessing) after
applying PURIFIER.

5.3 Comparison with Other Defenses
We compare PURIFIER with the following defenses. ①Min-
Max [4]. ②MemGuard [15]. ③Model-Stacking [5]. ④MMD

Defense [8]. ⑤SELENA [18]. ⑥Relax-Loss [30]. ⑦One-Hot
Encoding. Moreover, we also test the defense performance
of adding random noise to confidence scores.

Table 5 shows the defense performance of PURIFIER and
other defense methods against membership inference attacks
on different datasets. Among all the 10 attacks and the 6
datasets, PURIFIER achieve the best performance 31 times
and the second best performance 12 times, compared to other
defense methods (One-Hot Encoding and Random Noise are
not included in the statistics because their transformation
on confidence vectors leads to a large degree of semantic
information loss). For the Mlleaks Attack, PURIFIER can
achieve the best performance, similar to One-Hot Encoding
and Random Noise. PURIFIER also achieves a better security-
utility tradeoff than other defenses. It imposes a reduction
in test accuracy of about 1%. In comparison, Model-Stacking
and SELENA can mitigate membership inference attacks to
some extent, but they incur an intolerable reduction in the
model’s test accuracy. MemGuard reaches acceptable defense
performance with a negligible decrease in test accuracy,
however, its defense performance is not as good as that
of PURIFIER. For example, against NSH attack, the inference
accuracy with MemGaurd will be at least 2.5% higher than
that of PURIFIER.

For BlindMI attacks, PURIFIER has achieved the best
performance on CIFAR10, Purchase100, CIFAR100, and
Location. Specifically, on CIFAR100, PURIFIER reduces the
attack accuracy to 49.87%, which is 10.29% better than other
defense on average . The adavntage of PURIFIER is even more
obvious on Location, on which PURIFIER was able to reduce
the attack accuracy to 50.06%, while most of other defenses
can only achieve a defense performance between 76.67%
and 81.29%. On Facescrub530, PURIFIER’s performance is
second best only to RelaxLoss, with a negligible gap within
0.31%, where the attack accuracy of BlindMI can be reduced
to less than 50.31%. The reason why PURIFIER can obtain
such success against BlindMI is that among all the defenses
mentioned above, only PURIFIER has been specially designed
to defend against attacks targeted at statistical distribution
like BlindMI.

It should be noted that the defense performance against
transfer attack of PURIFIER on Texas and Location is abvi-
ously worse than that of SELENA, with average AUC of
0.4889 and 0.3117 respectively. One possible reason is that
the scales of training sets that are used on Texas and Location
are relatively small, which can bring some randomness to
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TABLE 6: Attribute inference attack against the UTKFace
classifier with different defense methods.

Dataset Defense Utility Attack AccuracyTrain acc Test acc.

UTKFace

None 99.92% 83.08% 31.06%
Purifier 83.87% 83.97% 21.07%

Min-Max 99.87% 82.92% 27.64%
MemGaurd 99.83% 83.89% 27.23%

Model-Stacking 82.74% 80.32% 28.04%
MMD Defense 98.84% 84.72% 29.37%

SELENA 88.23% 81.62% 24.33%
Relax-Loss 99.47% 79.49% 23.16%

the experiment results, without defense model on stable
convergence. More convincible results are still remained to
be tested on larger training sets.

We can also see that PURIFIER performs better than
most of other defense methods agianst FP attack. Although
SELENA performs better on 5 datasets, it outperforms PURI-
FIER by less than 0.3%. However, along with other defense
methods, PURIFIER does not perform well in defending FP
attack on some datasets, including Purchase100, CIFAR100
and location. We believe that this is due to the fact that FP
attack trains a large number of shadow models, thus it can
obtain a lot of information about member distribution. In
the training process of PURIFIER, the loss function we set
must take into account the differences between members
and non members, as well as the classification accuracy of
the model. Therefore, the trained CVAE is not the optimal
solution to reduce the differences between members and non
members. As a result, the confidence scores processed by the
confidence reformer can still be distinguished by FP attack.

PURIFIER also achieves the best performance in defending
model inversion attack on CIFAR10 and Facescrub530. Ta-
ble 5 shows that PURIFIER has the largest inversion error(also
called reconstruction error) compared with other defenses on
these datasets, quantitatively demonstrating that PURIFIER
achieves better defense performance against adversarial
model inversion attack than other defenses. Figure 3 depicts
the reconstructed samples from confidence vectors given by
each defense model on FaceScrub530 dataset. With PURIFIER
as defense, the reconstructed images are much less similar
to the ground truth image and look more blurred. Other
defense methods, however, could hardly protect the model
from adversaries recovering details of the original image. The
results can be quantitatively verified by the similarity scores
gathered from the Microsoft Azure Face Recognition service.
For instance, the average similarity scores of reconstructed
images of MemGuard-defended models are 0.17, which are
larger than that of PURIFIER (i.e., 0.14). PURIFIER achieves
the smallest similarity scores among other defense methods,
indicating that PURIFIER is most effective in protecting the
target model against adversarial model inversion attack.

Moreover, we also perform attribute inference attack
as section 5.2.3 goes on these defense methods. Table 6
shows the results. We can see that although the classification
accuracy on the training dataset of PURIFIER is the lowest,
the accuracy on the testing dataset doesn’t decrease, which
means that PURIFIER maintains the function of the model.
Against attribute inference attack, PURIFIER has the lowest
attack accuracy, 2.09% lower than Relax-Loss, which has the
second best defense performance.
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Fig. 5: Distribution of the target classifier’s confidence in
predicting the correct class and the prediction uncertainty on
members and non-members of training set.
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Fig. 6: Distribution of the target classifier’s confidence in
predicting the correct class on members and non-members
of its training set.

5.4 Indistinguishabilities in Purified Scores

In this subsection, we design further specific experiments to
analyze how the purified confidence scores affect member-
ship inference attacks by evaluating three indistinguishabili-
ties: individual shape, statistical distribution and prediction
label.

5.4.1 Individual Indistinguishability
As designed, PURIFIER reshapes the input confidence score
vectors according to the pattern of the learned non-member
samples. To examine the indistinguishability of the confi-
dence scores on members and non-members, we plot the his-
togram of the target classifier’s confidence in predicting the
correct class and the prediction uncertainty in Figure 5. The
prediction uncertainty is measured as the normalized entropy
−1

log(k)

∑
i
ˆ⃗
iy log(

ˆ⃗
iy) of the confidence vector y⃗ = F (x⃗), where

k is the number of classes. As Figure 5 shows, PURIFIER
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Fig. 7: Distribution of the target classifier’s prediction uncer-
tainty on members and non-members of its training set. The
uncertainty is measured as the normalized entropy of the
confidence score vector.

TABLE 7: Gap of the classifier’s confidence in predicting the
correct class(i.e, Confi) and the prediction uncertainty(i.e,
Uncer) between members and non-members.

Metric Defense CIFAR10 Purchase100 FaceScrub530
Max Avg. Max Avg. Max Avg.

Confi None 0.103 0.004 0.412 0.016 0.415 0.017
Purifier 0.009 0.000 0.019 0.001 0.012 0.001

Uncer None 0.114 0.005 0.201 0.015 0.418 0.017
Purifier 0.006 0.000 0.007 0.001 0.006 0.001

can reduce the gap between the two curves representing
members and non-members respectively. Similar results
can be obtained on CIFAR10 in Figure 6, Figure 7 and on
FaceScrub530 in classifiers.

We also report the maximum gap and the average gap
between the curves in Table 7. The results show that our
approach can significantly reduce both the maximum and
average gaps between the target classifier’s confidence in pre-
dicting the correct class as well as the prediction uncertainty
on its members versus non-members. This demonstrates
that PURIFIER successfully reduces the individual differences
between members and non-members.

5.4.2 Statistical Indistinguishability
We present the statistical distribution of confidence score
vectors in the encoder latent space of the confidence reformer.
Figure 8 visibly displays the distributional differences be-
tween members and non-members in the latent space on
CIFAR10. As illustrated in the first row, latent vectors of
the members tend to cluster together according to their
labels, while those of non-members are more scattered in the
map. The second row of Figure 8 also shows the statistical
distribution of members and non-members processed with
PURIFIER in the latent space. When processed with PURIFIER,
Gaussian noises are added to make the clustered member
latent vectors to be more scattered on the latent space. This
demonstrates that PURIFIER can reduce the statistical differ-

(a) Original member latents. (b) Original non-member latents.

(c) Purified member latents. (d) Purified non-member latents.

Fig. 8: The statistical distribution of latent vectors on the
CIFAR10 dataset. Different colors stand for latent vectors
with different labels. (a) and (b) depict latent vectors of the
original member and non-member confidence score vectors;
(c) and (d) depicts latent vectors of member and non-member
confidence score vectors with PURIFIER defended.
ences between members and non-members while preserving
semantic utility.

5.4.3 Label Indistinguishability in Purified Scores
PURIFIER uses label swapper to identify and swap the pre-
diction label of members. label swapper incurs negligible
reduction of test accuracy, while swapping the labels of
the member samples reduces the training accuracy to a
greater extent. It causes that the gap between the accuracy
of members and non-members which is often exploited to
perform label-only attack is minimized. This is shown in
Table 2, where the training accuracy of the model is close
to the test accuracy. Many label-only membership inference
attacks are less effective under PURIFIER with label swapper.
This reflects that the purified member confidence vectors are
less distinguishable from those of the non-members in terms
of labels.

We conduct the ablation study on the label swapper to
investigate its effectiveness in our defense mechanism. As
the Table 8 shows, we defend the classifiers against label-only
transfer attack in the case of no defense, defense with only
confidence reformer, defense with confidence reformer and
label swapper. Results show a significant AUC drop with
the help of label swapper compared to those mechanisms
without it. Additionally, the result indicates that label-only
transfer attack can obtain approximately the same AUC
among models with no defense and PURIFIER without the
label swapper, which means that PURIFIER without label
swapper fails to mitigate the label-only attack as we have
assumed. In summary, the label swapper plays an indelible
role in defending the label-only attacks.

5.5 Efficiency of PURIFIER

Figure 9 presents the efficiency of PURIFIER compared
with other defenses. We perform our experiments on a PC
equipped with four Titan XP GPUs with 12GBytes of graphic
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Fig. 9: Efficiency of different defense methods.

TABLE 8: Ablation study on the Label Swapper. G represents
the confidence reformer, and H represents the label swapper.

Dataset Defense Label Only Transfer Attack

CIFAR10
None 0.5048

G 0.5045
H + G 0.5010

CIFAR100
None 0.6668

G 0.6632
H + G 0.4938

memory,128 GBytes of memory and an Intel Xeon E5-2678
CPU. The training time of PURIFIER is only 0.423 time of the
target classifier, which outperforms Min-Max, MemGaurd
and SELENA. The testing time of PURIFIER is 18.06 times as
much as the target classifier, which is considered acceptable
compared to MemGuard whose testing time is 7,000+ times
more than the original classifier.

5.6 What If Swapping Confidence Reformer and Label
Swapper
The placement order of confidence reformer and label swapper is
also worth discussing. As we said in section 4, the confidence
reformer is designed to achieve individual and statistical
indistinguishability, and the label swapper is designed to
achieve label indistinguishability. The independence of their
functions also indicates that we can place label swapper
before confidence reformer, or reverse it.

To discuss the placement order of confidence reformer
and label swapper, we test the performance of PURIFIER
with label swapper after confidence reformer and PURIFIER
with label swapper before confidence reformer respectively
against six different attacks, including NSH, Mlleaks, Adap-
tive, Gap, Transfer and Boundary attacks, on six datasets.

Table 9 shows that, in most cases, PURIFIER with label
swapper before confidence reformer outperforms the other
one with an average 0.19% margin. One reasonable explana-
tion is that with label swapper before confidence reformer,
the intention of swapping the output label to the one with the
second-largest confidence score is more likely to be leavened
since the swapping result will then go through the confidence
reformer for further process. In other words, with confidence
reformer placed after label swapper, more randomness is
added to the output result, making label swapping less
straightforward to detect.

To further unravel the insightful reason why placing label
swapper after confidence reformer could cause worse distin-

guishability, we conduct another experiment. Theoretically,
the transformation effect of confidence reformer appears to
be softening. If we swap labels later, the softening effect
may be destroyed, which can lead to a difference between
members and non-members. For example, assume that after
processed by confidence reformer, the confidence score of
some class is always not higher than 0.95. If it is found that
the confidence score of this class is 98%, then it is obvious
that the sample has been swapped, indicating that it is a
member of training dataset. Aiming to take advantage of this
weakness, we design an adaptive attack on CIFAR10 which
tries to capture the outputs that have been switched to the
second-most confident class, using a shadow model.

The result shows that when placing the label swapper
after confidence reformer, 10.97% of the outputs are found
having switched labels, while none of them can be detected
in the case where label swapper is placed before confidence
reformer. With confidence reformer as a secondary treatment,
the outputs of label swapper have a greater chance to be
modified so as to become unrecognizable and thus escape
the detection of adversaries, which further demonstrates the
rationality of placing the label swapper before confidence
reformer.

5.7 Further Experiments

5.7.1 Influence of Different Training Datasets
We also investigate the effect of the PURIFIER’s training
data by using data with different sizes or distributions to
train PURIFIER. Specifically, for in-distribution data, we vary
the size of D2 and also replace D2 with D1. For out-of-
distribution data, we use CIFAR10 data to train the PURIFIER
for the FaceScrub530 classifier, and use randomly generated
data to train the PURIFIER for the Purchase100 classifier.

We present the effect of the in-distribution training data in
Table 10. The results show that PURIFIER is still effective. The
membership inference accuracy (Mlleaks and Adaptive) is
reduced to nearly 50% regardless of the size of D2. PURIFIER
is also insensitive to the size of the D2. The difference in the
defense performance is negligible as the size of D2 changes
from 5,000 to 60,000. This is good for the defender, as one
can achieve good performance with a small reference set.
However, when the size of D2 becomes too large (i.e., 40,000
to 60,000), the classification accuracy drops to a certain extent.
The reason could be that PURIFIER starts to learn the detailed
information of the confidence score vectors. As a result, the
purified confidence score vector no longer concentrates on
general patterns but becomes an accurate reconstruction,
which hinders the classification utility.

When we use the classifier’s training data D1 to train the
PURIFIER, the defense performance is comparable to the ones
on D2. For example, the attack accuracy of the NSH attack is
52.29%, which is marginally higher than the result of 51.71%
on D2, but still acceptable.

Table 11 shows the effect of the out-of-distribution
training data. PURIFIER can still mitigate the attacks, but
at the cost of sacrificing the utility of the target classifier
significantly. This is not surprising because PURIFIER cannot
extract useful patterns from the confidence scores on out-
of-distribution data, which makes the purified confidence
information meaningless.



15

TABLE 9: Defense performance of different placement order of Confidence Reformer and Label Swapper. P1 refers to placing
Confidence Reformer before Label Swapper, and P2 reversely.

Dataset Order Train acc. Test acc. NSH Mlleaks Adaptive Gap Transfer Boundary

CIFAR10 P1 97.60% 95.52% 51.65% 50.26% 50.23% 50.84% 0.4974 0.4949
P2 95.93% 95.92% 50.91% 50.03% 50.00% 50.01% 0.5010 0.4684

Purchase100 P1 86.59% 82.23% 51.71% 50.09% 50.13% 51.68% 0.4978 N.A.
P2 84.47% 84.36% 50.00% 50.00% 50.25% 50.06% 0.4961 N.A.

Facescrub530 P1 77.58% 77.52% 51.56% 51.04% 50.00% 50.02% 0.4983 0.6185
P2 77.51% 77.28% 50.08% 50.66% 50.12% 50.12% 0.4990 0.5069

CIFAR100 P1 70.02% 69.98% 50.01% 50.15% 51.02% 50.02% 0.5120 0.4975
P2 66.35% 66.34% 50.91% 50.19% 50.45% 50.01% 0.4938 0.3742

Texas P1 51.01% 50.91% 51.29% 50.00% 51.18% 50.05% 0.5028 N.A.
P2 50.99% 47.88% 50.92% 46.38% 54.48% 51.56% 0.4926 N.A.

Location P1 60.45% 60.43% 51.75% 50.31% 51.41% 50.01% 0.5015 N.A.
P2 60.50% 59.44% 51.50% 50.06% 51.56% 50.53% 0.4851 N.A.

TABLE 10: Effect of the PURIFIER’s in-distribution training
data on the defense performance. The numbers are reported
on the Purchase100 dataset.

Training set Test acc NSH Mlleaks Adaptive
D2 (5,000) 84.47% 52.35% 50.08% 50.62%
D2 (10,000) 84.45% 51.14% 50.13% 50.12%
D2 (20,000) 84.36% 51.67% 50.10% 50.11%
D2 (40,000) 83.89% 52.01% 50.11% 50.18%
D2 (60,000) 84.64% 52.02% 50.11% 50.09%
D1 (20,000) 84.66% 52.08% 50.11% 50.08%

TABLE 11: Effect of the PURIFIER’s out-of-distribution train-
ing data on the defense performance.

Classifier Purifier Test acc NSH Mlleaks Adaptive
FaceScrub530 CIFAR10 41.33% 53.29% 50.11% 50.48%
Purchase100 Random 6.91% 51.31% 50.17% 50.82%

5.7.2 Inference about Reference Data
Our approach uses a reference dataset to train PURIFIER.
Involving an in-distribution reference dataset in the defense
mechanism is common in the literature. For instance, Mem-
Guard uses a reference set to train the defense classifier.
Min-Max uses it to train the inference model. Unfortunately,
little has been discussed on whether such reference dataset
brings vulnerability for data inference attacks. Assuming the
reference data are considered as members, we present the
inversion error and the inference accuracy (we consider NSH
attack) on the reference set D2 and the test set D3 for each
defense in Table 12. Results show that the inference accuracy
does not increase on the reference set compared with the
original training data of the target classifier. PURIFIER can
still preserve the defense effect against the adversarial model
inversion attack and the membership inference attack.

5.7.3 Effect of PURIFIER on Noisy Member Detection
Furthermore, we investigate the effectiveness of PURIFIER to
detect noisy members. Label swapper needs to judge whether
an input sample is a member, which should be robust to noise.
We conduct this experiment with the purpose of testing
whether the PURIFIER can handle noisy samples well. More
specifically, when a member with noise is input, the PURIFIER
can process it as a member. We use the adversarial attack
methods (FGSM [35]) to create noisy members.

TABLE 12: Results of model inversion attack and membership
inference attack on the reference set for different defenses.
The experiments are performed on the FaceScrub530 dataset.

Defense Inversion error Inference accuracy
Purifier 0.0422 51.44%

Min-Max 0.0219 52.19%
MemGuard 0.0129 52.51%
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Fig. 10: The proportion of noise data that PURIFIER can detect
under the FGSM attacks on the FaceScrub530 dataset.

As shown in Figure 10, PURIFIER can accurately detect the
members with noise ∥η∥∞ < 1e−10 on FaceScrub530 dataset,
which means that PURIFIER is robust to noisy members.

6 RELATED WORKS

Inference Attacks. The inference attacks against machine
learning can be divided into model inference and data
inference attacks. In model inference attacks [22], [20], [23],
[21], an attacker could infer the parameters [22], hyper-
parameters [23], architecture [20] and functionality [21] of
a target model.

We focus on data inference attacks in this paper. Xiao
et al. [36] studied the adversarial reconstruction problem
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where they aimed to prevent the latent representations from
being decoded into the original input data. To this end, they
regularized the encoder with an adversarial loss from a
decoder. They studied the face attribute prediction model
which outputs 40 binary facial attributes. Our paper, on the
contrary, studies black-box classifiers whose output is con-
strained by a probability distribution (i.e., values sum up to
1). Moreover, they did not consider the adversarial scenario
where the attacker has no access to the same data distribution
as the original training data. Jia and Gong [37] proposed the
adversarial formulation for privacy protection. They aimed
at protecting the privacy of users’ sensitive attributes from
being inferred from their public data. Our work investigates
inference attacks that leverage prediction results of machine
learning models to infer useful information about the input
data.

General Membership Inference Attack. Membership
inference attack is performed to determine whether a given
data sample is part of a target dataset. Homer et al. [38]
proposed one of the first membership inference attacks in
the biomedical setting on genomic data. Some studies also
performed membership inference attacks on other biomedical
data such as MicroRNA [39] and DNA methylation [40].
Pyrgelis et al. [41], [42] further showed that it is possible to
perform membership inference attack on location datasets
as well. Shokri et al. [1] performed membership inference
attack in the machine learning setting which is the same with
our work.

Secure & Privacy-Preserving Machine Learning. A
number of studies made use of trusted hardware and
cryptographic computing to provide secure and privacy-
preserving training and use of machine learning models.
These techniques include homomorphic encryption, garbled
circuits and secure multiparty computation on private data
[43], [44], [45], [46], [47], [48] and secure computing using
trusted hardware [49], [50]. Although these methods protect
sensitive data from direct observation by the attacker, they do
not prevent information leakage via the model computation
itself which could be exploited by various inference attacks.

7 CONCLUSION

In this paper, we propose PURIFIER to defend data inference
attacks. PURIFIER learns the pattern of non-member confi-
dence score vectors and purifies confidence score vectors
to this pattern without getting involved with the training
process of the target model. It makes confidence vectors on
members indistinguishable from those on non-members in
terms of individual shape, statistical distribution and predic-
tion label. Our extensive experiments show that PURIFIER is
effective and efficient in mitigating existing data inference
attacks, outperforming previous defense methods, while
imposing negligible utility loss.
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